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LElTER TO THE EDITOR 

SO(3) U models of the two-dimensional spina Heisenberg 
antiferromagnet 

A Holzt 
Fachrichtung Theoretische Physik, Universitat des Saarlandes, 6600 Saarbriicken, Federal 
Republic of Germany 

Received 13 March 1990 

Abstract. An SO(3) gauge theory of the spin-f Heisenberg antiferromagnet ( H A )  on a 
two-dimensional square lattice is developed. The effective action r,, of the system is 
described by an anisotropic SO(3) U model supplemented by Berry’s phase terms, featuring 
a possible instability of the regular N6eI ground state. This problem is discussed in 
connection with the singlet nature of the ground state of the spin-f HA and in terms of a 
generalised chiral S0(3)* U model. 

According to Haldane (1983) the first-order approximation to a semiclassical action 
r,, of the spin-: H A  on a square lattice with Hamiltonian 

H = J c (SlS,” + s:’si’+ s; Sf) 
( U )  

represents an O(3) U model 

Here n = (n’, n2, n’) is a unit vector field, J and f are coupling constants and c -Jh. 
Additional terms to (2) taking account of finite spin s have been suggested in the form 
of Hopf’s invariant by Wilczek and Zee (1983), and by Wen and Zee (1988) and 
Haldane (1988) in the form of Berry’s (1984) phase term, where only the latter survives 
in perturbation theory. The correct expression for r,, should be such that at T = 0 its 
ground state is non-degenerate corresponding to the spin singlet ground state of (1) 
(Lieb and Mattis 1962). Using (2) this is obviously hard to achieve, because its classical 
ground state at T = 0 is symmetry broken and has an CO* degeneracy. 

The approach described below is motivated by the observation that the dynamics 
described by (1) is invariant under gauge transformations SO(3) x SU(2) of coordinate 
and Hilbert space basis. The diagonal of this group GD - SO(3) corresponds to the 
subgroup G-SO(3) of gauge transformations of the { n }  field in (2).  Accordingly if 
one applies to (2) g E G defined by 

g : n +  n ’ = G  n G E SO(3) (3) 
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where G=G(x) ,  x = ( r ,  t ) ,  one may also study fsc=fsc({G}, {(d/dt)G}). In this 
representation the dynamic variables of fsc are the sets {G} and {(d/dt)(G)}, whereas 
the {n} field may be gauge fixed by {n,}. The three-dimensional nature of S0(3)-space 
implies that one of its dimensions represents gauge degrees of freedom, which are 
fixed by those sets {g,-}, where gf = {G(x)} satisfies 

(4) nr(x) = G(x) ’ n,-(x). 

Suppose that fsc-rsc is derived from (1) in a two-step procedure. First apply 
g E GD to (1) yielding 

g : H + H, = Hg ({G}, { $ G“”)}  ; {S(x)}) ( 5 )  

where G”’”(x) is a spin-; representation of G(x). In the second step {S(x)} is integrated 
out and yields 

where Tsc can also be expressed in terms of {G“”)} and {(d/dt)G”’”}. If TSc has 
anything to do with f,,, a trace of the expectation value of the spin field {S(x)} under 
the rotational motion enforced by g should be observable in r,, in the form of the 
field {n,-(x)}. This field (if it exists) will play for Tsc the role of a gauge field, i.e. TSc 
should prove invariant under the set {gr} satisfying (4). However, on account of the 
singlet nature of the ground state of H, the field { n } - { n , }  is supposed to vanish. 
Accordingly fsc cannot be derived from ( 6 )  in a rigorous fashion, and the physical 
situation is similar as in polarisable media, i.e. ‘electric’ and ‘magnetic’ momenta 
corresponding to non-vanishing { n} fields may be induced by chiral fields, but decay 
after turn-off. For s + CO the situation is qualitatively different, because symmetry- 
broken states leading to (2) may be long lived. 

In the following the derivation of Tsc will be sketched and for more details the 
reader is referred to Holz (1990a). A gauge transformation g E GI, of (1 )  is characterised 
by a set {R“’”} with R‘1’2’ E SU(2), and the unitary transformation 

implying 

g :  H -f HB = U’HU -ihU’a,U. 

Next on a regular NCel sublattice L A  one defines 

i E L A  

+1 i g L A  
E i  = { -1  

and 

(8) [w$l/’)  = R( l /2 )  , { ~ ( 1 - ~ i ) R I ; L ’ 2 ) + f ( l + ~ i ) Z ( l ’ 2 ) }  I 

where R‘,’2’ represents a 180” rotation around the .f axis. Using the representation 

si = h{ i (  a: + a,)e, + $ ( - a ;  + ai)ev + ( a  ;ai -!)e,} (9) 
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where 

a,a:+ a:a, = 1 

and for i # j  all commutators of the set {al ; a : } , = , ,  , N  vanish, one obtains 

g :  SI + s: = s, (e, + 4 1  = ( w l p e p ) .  

Inserting (11) into H, yields 
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(10) 

where 

( 2 )  -_ Jh {[i(R:i)+ RK)) -i&,RE,l]aiaj +[$(RI;;'- RX))  - i~ ,Rz , ' ]a ;a~  
Hg - 4 ! , J € n n ,  

+2(iR&+ ~~R<,)ajaTa,  - RIJ:"aTaiaJaj+~~}. (136) 

Here HC represents the Hermitian conjugate, z the coordination number of the lattice, 
mi the nearest neighbours to i and R" = R j  Ri .  Furthermore 

(14915) ~ ( ' 1 )  = I( RY + Rij) R[ol = f( Rij - RJi) 2 

and the angular velocity vector (e,',, Of,, O:,) in the body-fixed frame is obtained from 
the three Maurer-Cartan 1-forms of S0(3)-space 

0" = -ha d@ -sin 0 d h "  + (1 -cos 0 ) ~ " ~ ~  dh'h '  (16) 

in the form 0" = Op, dt. Here .sLlbC is the totally antisymmetric symbol in 3-space, and 
{&, 0) are coordinates in S0(3)-space. Using the notation 

AOP = OP(d + Sji * V i )  (17) 

where Sji is a nearest-neighbour vector all quantities in Hg can be expressed in terms 
of the components of (16) and their derivatives. 

TSc can now be derived via the effective Lagrangian gefiJ7),  which is computed 
over the ground-state amplitude 

Here the evolution operator is defined as usual 
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where T is the time-ordering operator and Hg., (7) is Hg transformed to the interaction 
picture. This is formulated in terms of a magnon representation, where (10) is accounted 
for by a hard-core repulsion 

N 

Hhc = A, ~ ; ~ a f .  (20) 
1 = l  

Within the magnon approach 9eff,, has been computed by Holz (1990b) and can 
formally be represented as 

Here the notation 

0" = OP, dt+OP, dx" OP,, 3 ago; (22) 

has been used and summation convention is implied. The second and third terms of 
2eff,g represent kinetic and potential energy respectively, and the last term represents 
a Berry's phase term. In third-order perturbation theory a Chern-Simons term may 
form but vanishes identically as a consequence of the symmetry of the bare propagators. 
Within a similar approach this result has been derived earlier by Wen and Zee (1988). 

9eff,g suffers under at least three defects. 
(i)  It is not invariant under the chiral transformations 

R ( x )  + A * R(x)  - B' A, B E  SO(3) x SO(3). (23) 
More precisely it is invariant under A (left invariance) but not under B (gauge 
transformation). This is a consequence of the symmetry-broken ground state. 

(ii) The coefficients {go }  are not necessarily all positive, at least in low-order 
perturbation theory. If true it signals an instability of the regular NCel sublattice L A .  

( i i i )  Some of the coefficients in 2e,tf,g (e.g. { k , } )  suffer under infrared infinities. 
From this various conclusions can be drawn. 
( a )  Non-existence of a Chern-Simons term may be an artifact of perturbation 

theory, which fails due to (iii). Consequently use of a renormalised (by the chiral 
field) propagator of lower symmetry may change this result. 

( 6 )  LA has to be modified by means of a dynamic network of phase boundaries. 
This will partially restore the rotational symmetry, broken by the imposition of L A .  

( c )  For { g a } < O  defects classified by the homotopy groups .?r1(S0(3))=Z2 and 
n3(SO(3)) = Z will form abundantly and restructure the NCel ground state. 

( d )  The use of a renormalised propagator based on the harmonic part of Hg will 
feature for generic gauges {R(1'2)} negative mass for certain domains of the 2-space. 
This leads to an abundant production of magnons and in this way to a decay of the 
NCel ground state. Presumably this is the physical origin of {g.} < 0. 

( e )  A computation of the new ground state of TSc requires that the saddle point 
(trajectory) is sought in complex S0(3)-space. That is obtained by replacing the chiral 
vector @6 by a complex quantity O(ei'a&"', i.e. SO(3) is replaced by SO(3, l ) ,  which 
can be formally considered as two coupled S0(3)-spaces. 
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From this I conclude tentatively that TSc is represented by two SO(3) fields, 
reflecting the two earlier Niel sublattices and being described by a Lorentz invariant 
action postulated to be of the form 

where 

and diag( 7”’) = ( l /c* ,  - 1 ,  - 1 ) .  The first term of (24) represents a generalised SO(3)’a 
model, and a diagonal term is of the form 

(26) 

This is a composite O(2) and O ( 3 )  U model. The second term in (24) depends only 
on curvatures, and the third term is of Wess-Zumino type (see e.g. Zakrzewski 1989), 
where brackets indicate symmetrisation. For the coupling constant and critical angles 
one may set 

F , ,  = F,2> 0 

a,, = 6,,>0 

F , ,  = F,, > 0 

6,* = 6 2 ,  > 0. 

for F =f, g 
(27) 

The chiral fields {&v,0m},=l,2 are supposed to act on the spin field in a Lorentz 
invariant fashion, yielding for fixed gauge field 

The expectation values {(nz(x))} are computed with respect to an invariant measure 
of S0(3)*-space and (24), and vanish for Tk 0. Alternatively the correlation functions 

( n  X X )  n XX’)) (29) 

do not vanish at T = 0 for Ix - xfI +W.  Due to f l z ,  g,, > 0 smooth configuration will 
imply 07;:. - -0:;:. , and therefore (29) will reflect ‘antiferromagnetic staggering’. 

Disordering of the S 0 ( 3 ) 2 ~  model requires, via (29), two types of processes, where 
the first restores SO(3) symmetry of the chiral fields and is reflected in exponential 
decay of (29). The second process restores part of the local symmetry lost by ‘antifer- 
romagnetic staggering’. It is driven by the dissociation of topological defects, which 
are generated as twins in the two chiral fields. Observe that for f,,, g,, --* 0 such twins 
are strongly coupled and (24) describes effectively an SO(3) U model. Interaction 
between pairs of twins will follow the law loglr - r’l and between twins it will follow 
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Ir,  - r212 loglr, - r21. For T >  0 the first law will be screened and the second law reduced 
to log(*, - r21. Accordingly two types of phase transition can be expected within this 
model. The second transition corresponds roughly to a disordering of NCel sublattices 
in the O ( 3 )  U model via a network of domain boundaries (see e.g. Holz 1989). It may 
lead to a non-analyticity in ( n f ( x ) n ; ( x ) ) .  

In conclusion I suggest r,, given by (24) as a semiclassical action for the spin-; 
HA. rsc can be considered as the closest relative to the O(3) U model at least if one 
admits just one chiral SO(3) field. This implies that most of the ideas developed for 
the O(3)  U model in connection with high-T, superconductivity may easily be gen- 
eralised to the SO(3)‘”u model. 
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